Energy Technologies

Produzione e distribuzione di elettricità  e calore



Status Title Autors Info
Status Title Autors Info
5 Electrochemical Accumulators for Stationary Use Pier Paolo Prosini, Maria Carmen Falvo, Matteo Manganelli, Matteo Scanzano
5 Energy Storage via Thermal Technologies Chiara Boccaletti
5 Electricity Storage via Mechanical Technologies Chiara Boccaletti
5 Electricity Storage via Mechanical Technologies Chiara Boccaletti
5 Electricity Storage via Chemical Technologies Chiara Boccaletti
5 Thermal Energy Storage Fabio Bisegna, Fabio Nardecchia, Laura Pompei, Adio Miliozzi
5 Carbon Capture and Storage Claudia Bassano, Stefano Stendardo, Paolo Deiana, Andrea Lanzini, Elena Rozzi
5 High Temperature Fuel Cells Marta Gandiglio, Massimo Santarelli, Davide Pumiglia
5 Concentrating Solar Power Simona De Iuliis
5 Decarbonization of the Food Industry Pierluigi Leone, Sonja Sechi, Rosilio Pallottelli
5 Decarbonization of Pulp and Paper Production Pierluigi Leone, Sonja Sechi, Antonio Calabrò
5 Decarbonisation of Aluminum Production Massimo Maffucci, Pierluigi Leone, Sonja Sechi
5 Decarbonization of Chemical Production Pierluigi Leone, Sonja Sechi, Rosilio Pallottelli
5 Decarbonization of Textile Production Pierluigi Leone, Sonja Sechi, Antonio Calabrò
5 Electricity Distribution Luigi Martirano, Matteo Manganelli, Giorgio Graditi, Maria Valenti
5 Electrification in Industry Pierluigi Leone, Sonja Sechi, Antonio Calabrò
5 Gas-fired Power Plants Marco Maccioni
5 Off-shore Wind Energy Filippo Spertino, Gabriele Malgaroli, Angela Amato, Giambattista Guidi
5 Onshore Wind Energy Filippo Spertino, Gabriele Malgaroli, Angela Amato, Giambattista Guidi
5 Nuclear Energy Giambattista Guidi, Luisa Ferroni, Michela Mascia
5 Biomass Gasification Elena Rozzi, Andrea Lanzini, Nadia Cerone
5 Maritime Transport Carriers Alessandro Ruvio, Andrea Vicenzutti, Silvia Orchi
5 Renewables Integration in Distribution Grids Giorgio Graditi, Marialaura Di Somma, Maria Carmen Falvo, Matteo Manganelli, Matteo Scanzano
5 Renewables Integration in Transmission Grids Giorgio Graditi, Marialaura Di Somma, Maria Carmen Falvo, Matteo Manganelli, Matteo Scanzano
5 Buildings Envelop - Windows and Shutters Antonio Di Micco, Fabio Bisegna, Chiara Burattini, Laura Pompei
5 Photovoltaics Solar Power Salvatore Castello
5 Electric Hobs Chiara Boccaletti, Simonetta Fumagalli
5 Biomethane Production Marco Cavana, Pierluigi Leone, Elena De Luca
5 Biomass for Combined Heat and Power Andrea Lanzini, Elena Rozzi, Vincenzo Gerardi, Giovanni Stoppiello
5 Synthetic Gas Production via Power-to-Gas Process Paola Gislon, Francesco Orsini, Alberto Grimaldi, Elena Rozzi, Andrea Lanzini
5 Low-carbon Hydrogen from Sources other than Renewables Marco Cavana, Pierluigi Leone, Viviana Cigolotti
5 Hydrogen Production from Renewable Sources – Green H2 Domenico Ferrero, Massimo Santarelli, Luca Turchetti
5 District Heating Systems Fabio Nardecchia, Fabio Bisegna, Fabio Zanghirella
5 Low Temperature Solar Thermal Ferdinando Salata, Lorenzo Maria Pastore, Fabio Bisegna, Adio Miliozzi
5 Desalination technologies Matteo Fasano, Matteo Morciano, Rafael Dona Guerrero, Giampaolo Caputo
5 Geothermal Technologies for Buildings Heating and Cooling (low enthalpy) Stefano Lo Russo, Martina Gizzi, Anna Carmela Violante
5 Geothermal Technologies For Energy Production (High Enthalpy) Stefano Lo Russo, Martina Gizzi, Michele Mondani, Anna Carmela Violante
5 Hydro-Power Technologies Pierluigi Leone, Enrico Vaccariello, Giambattista Guidi
5 Electricity Transmission Giorgio Graditi, Maria Valenti, Maria Carmen Falvo, Matteo Manganelli, Matteo Scanzano
5 CO2 Transport Marco Cavana, Pierluigi Leone, Claudia Bassano
5 Hydrogen Transport and Storage Marco Cavana, Pierluigi Leone, Stephen McPhail
5 Natural Gas Transport and Logistics Alessandro Giocoli, Marco Cavana, Pierluigi Leone
5 Technologies for CO2 Utilization Marco Marchese, Massimo Santarelli, Andrea Lanzini, Rosanna Viscardi
5 Electric Vehicles Manlio Pasquali, Fabio Giulii Capponi
5a Electricity Transmission and Distribution Giorgio Graditi 2018 archive
5a Fuel Cells Stephen Mcphail 2018 archive
5a Tecnologie geotermiche Massimo Angelone 2018 archive

   Nuclear Energy


Autors:   Giambattista Guidi, Luisa Ferroni, Michela Mascia


Production and Distribution of Electricity and Heat

The nuclear reactors currently (December 2020) in operation in some 30 countries all over the world total 443 units, with a total capacity of about 393 GW. They use the nuclear fission process to produce electricity and are mainly Generation II (Gen II) type reactors [1], with design concept dating back to before 1990. Since the 1990s, the increasing attention to the nuclear safety led to the development of Generation III (Gen III) reactors, with improved safety and economic operation. Among these, the most innovative projects are defined as Generation III+ (Gen III+) and include e.g. the French EPR reactor and the US AP1000 reactor. These reactors allow for a greater exploitation of nuclear fuel (burn-up), improved passive and intrinsic safety, higher plant availability, as well as design standardization and simplification, with a consequent reduction of costs and construction time. However, the construction of some (Gen III+) new reactors in Europe has experienced significant delay and exceeded the budget initially allocated. Future projects should take advantage of the experience gained and the potential for cost reductions [5]. At present , several Gen III and Gen III+ reactors are already operational and others are under construction, mostly in Asia. As of December 2020, some 52 reactors are under construction worldwide (12 n China), with a total capacity of 55.7 GW [2]. Another 98 reactors are planned in the rest of the world [3].

In the European Union, the average age of the nuclear reactors in operation is very high and many Member States will soon be forced to choose between replacing these reactors or extending their operating life; in the absence of either option, it is estimated that more than 50 of the 129 operating reactors will be closed by 2025 and 90% will be closed by 2030 [5], resulting in the need to replace their generating capacity. Italy, despite being among the first countries to develop nuclear energy in the '60s, has subsequently renounced, as is known, the nuclear option and currently the Italian nuclear reactors in operation since the mid '80s are being decommissioned
07-07-2022




Click to see the full list of technologies

Ultime Notizie